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Restricted flows of soliton hierarchies: coupled Kdv and 
Harry Dym case 

Marek Antonowicztff and Stefan Rauch-Wojciechowski$Il 
t Institute of  Theoretical Physics, Warsaw University, Hoza 69, 00-681 Warsaw, Poland 
i Department of Mathematics. LinkGping University, S 58183 LinkGping, Sweden 

Received 21 May 1991 

Abslrrd. Restricted flows of soliton hierarchies associated with the energy-dependent 
Schriidinger spectral problem are determined explicitly. A remarkable connection with 
separable potentials is used for proving complete integrability of the restricted Rows. A 
previously unknown Lagrangian and Hamiltonian formulation of the Neumann system is 
found. Whole families of generalizations of the Neumann and Gamier systems are given. 

1. Introduction 

In previous papers [1,2] we introduced a general method of constructing finite- 
dimensional integrable systems related to a given bi-Hamiltonian hierarchy of soliton 
equations. This paper presents the results of systematic application of this method to 
the hierarchies of coupled K d v  icKdvj equations and coupled Harry Dym i c H D )  

equations. The results show a surprising fact that the theory of stationary flows of the 
Schrodinger spectral problem is closely connected with the classical separability theory 
of the Hamilton-Jacobi equation. 

The main limitation in the construction of integrable finite-dimensional systems 
given in [ I ,  21 is the problem of explicit solvability of the condition K, = B,,,@,-,,, (see 
i i . i i b j  herej which restricts flows of the soliton hierarchy to an invariant finite- 
dimensional manifold. We address this question here and present a general solution 
for KO and K ,  flows. We would like to stress that many of these finite-dimensional 
systems are physically interesting because they describe free natural Hamiltonian 
systems or Newton potential equations constrained to some surface. The natural 
Hamiltonian systems which arise here are identified with some previously known 

the Neumann and Gamier systems. 
In  order to show how our construction of restricted flows works in concrete cases 

we discuss first some 'few component' cKdv and c H D  cases and then derive general 
formulae for the whole families of cKdv and c H D  equations. AI1 dynamical systems 
derived in  this paper are expected to be completely integrable. We prove this for some 

With the multiple forms of the same dynamical system, which naturally arise from 
our construction, there are connected finite-dimensional multi-Hamiltonian structures 
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[2] which we do  not discuss in this paper except the Neumann system. For the Neumann 
system we find here a previously unknown Lagrangian description which simul- 
taneously contains information that the system is constrained to a sphere. From this 
Lagrangian we derive a new Hamiltonian formulation which on the constraints is 
equivalent to the Moser [3] Hamiltonian formulation of the Neumann system, 

We begin in section 2 with multi-Hamiltonian formulation of the c K d v  and c~~ 

hierarchies. Then the square eigenfunction relations are introduced and the restricted 
flows are defined. The problem of solvability of the restriction (2.126) is discussed. In 
section 3 we study restricted flows of the cKdV hierarchy. First for the Kdv. DDW and 
Ito hierarchies (section 3.1) and then in the whole generality for K O  and K, restricted 
flows in section 3.2. Section 4 about = H D  restricted flows follows the same pattern as 
section 3. It starts with the few component cases N = 1 , 2  and then gives general 
solutions for the K, and K! restricted flows. In the appendices we give complete 
characterization of the Neumann family of separable potentials and discuss new 
Lagrangian and Hamiltonian formulation of the Neumann system. 

M Antonowicz and S Rauch- Wojciechowski 

2. Restricted flows of the energy-dependent Schrodinger spectral problem 

2. I .  Energy-dependent Schrodinger spectral problem: formulation and notation 

Let us consider the spectral problem [4] 

where J=J/ax ,  E;  are constants and ui are functions of x. It is usually called the 
energy-dependent Schrodinger spectral problem since the potential U depends on the 
spectral parameter A. Compatibility of (2.1) with the time evolution equations 

+ , = ( t p ( u , A ) a + Q ( u ,  A ) ) +  

for the wavefunction + gives rise to Q = -;P, and 

u , = { ~ a d 3 + $ ( u d + J u ) } P =  1 J,A' P = J P  (2 .2)  .) 
where J, =&,a3 +f(u,a+ Ju,) and the subscripts f and x mean derivatives. If one assumes 
P = F + P ,  _, A +  ...+ P,A" then ( 2 . 2 )  leads (at powers A" , ._ . ,  A m f N )  to m recursion 
equations: 

"U. 1-P. X - N  . .+JiPI-Nli+., .+j. .Pi;=O k =0,. , . , m -1 (2.3) 
for themunknowns Pa ,_ . . ,  P,-, (P,=Oforr=-l ,-Z , . . .  in(2.3)).Attheremaining 
powers A', . . . , A N  one gets N + 1 evolution equations: 

/ O  . . .  0 J , , \  

K , , [ u ]  denotes here the vector field of the I ,  flow. As has been shown [4], recursion 
equations (2.3) can be solved starting with P,]E ker(J,) iff E ,  = 0. F in (2.4) remains 
underdetermined by (2.3) and has to be chosen consistently with the structure of 
equations (2.4). Thus (2.4) splits into two cases: 
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(i) Coupled Kdv case when uN =constant (set uN = -1). The last equation (2.4) 
complements equations (2.3) to determine F = P,. The remaining equations (2.4) then 
take the N + 1 Hamiltonian form 

where 

I 7 0 

are matrix Hamiltonian operators, Pch'=  ( P k - N + , ,  . . . , Pk)' and for any n the P, can 
he determined through the solution of the formal series equation 

which is equivalent to the recursion (2.3) for arbitrary k. 
(ii) Coupled Harry D y m  case when uN it constant and F is unconstrained. The 

choice F = n implies U: = -a*  = constant, The remaining equations (2.4) give rise to 

I ~ , p ( " - l l ~ , , , E ~ , p ' " + N - l )  (2.8) 

which again have (N+l)-Hamiltonian form with the same B, as in (2 .6)  and P. 
determined as  solutions of (2.7).  

In both cases we solve the same recursion equation (2 .7)  

o = ( J , A ~  + . . , +J,A  + J ~ ) (  p0+ P,A- '  + P,A-' + . . . ) 
which starts with 0 = JNPo and gives 

P n = G Z i  

In the cKdv case uN = -1  and the choice c = -4 gives Po = 2, P ,  = uN-, , . . . . In the 
c~~ case uN #constant and we start with Po= 1 / 6 .  It has been proved in [4], for 
cKdv and c~~ cases, that the vectors P'", k =0,  1,. . . are variational derivatives of a 
sequence of corresponding Hamiltonian densities. 

p 1 -1 - * u N [ - u N ~ ~ P n - t & N - - I P n r r + f & N - i ( P : r I P ~ ) I . .  - 1  . . 

2.2. Square eigenfunction relations ( S E R )  

Let 4, $J, he any two wavefunctions satisfying the linear equations (2.1) 

o = (&)a*+ U)+ o =  ( E ( A ) J ~ + u ) ~  (2.9) 
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for the same value of the spectral parameter A. The function $$ satisfies the SER 

M Anronowicz and S Rnuch- Wojciechowski 

J ( $ $ )  = { ~ & ( A ) a 3 + f (  uJ+ J u ) } ( + + )  = 0 (2.10) 

which can be written in N equivalent ways: 

& ( A - , + $ , .  . . , AN-"-'$$)'  

= B,+,(A-~-'$$, . . . , A ~ - " ' - ~ $ $ ) '  m =O,. . . , N-1 (2.11) 

using the Hamiltonian operators E,. The mth row in (2.11) is equivalent to (2.10) 
while the equalities in the remaining rows are satisfied identically. 

Any two wavefunctions satisfying (2.9) are connected by the Wronskian relation 
+& - +& =constant which is an integral of motion of (2.9) independently of the form 
of the potential U. Thus &+ -$& is a generator of symmetry of (2.9). In order to get 
rid of this symmetry we shall be interested in future only in the admissible reduction 
4 = $. 

2.3. Restrictedflows 

Restricted flows of the energy-dependent Schrodinger linear problem (2.1) have been 
defined in [2] as the following set of n + N equations for n + N unknown functions 
+k, ui: 

where @,,,=((+A"'+), . . . , (+AN-'+,+))' 

In equation (2.120) there are only N independent fields ui since uN = -1  for &dv and 
uo= -aZ=constant for C H D  equations. If we know explicit solutions U(+) to equation 
(2.12b) (at least for some rand  m) then (2.120) becomes an autonomous second-order 
system of differential equations for &. We are interested in the final form of these 
equations since they often have the form of Newton equations with a potential force. 
These potentials are later identified with families of potentials which are separable (in 
the sense of the Hamilton-Jacobi equation) in generalized elliptic and spherical conical 
coordinates. 

Equations (2.12) give rise to a large variety of restricted flows which are defined by 
( i )  specification of N and & ( A ) ;  
(ii) choice of K, and B,. 

The resulting flows depend on n parameters A , ,  . . . , A, which are assumed to be 
non-zero and all different. The choice of K, and B, is limited by the requirement that 
(2.126) can be explicitly solved for U in terms of $. For fixed K ,  different E, lead, 
due to the SER (2.1 l ) ,  to different but equivalent forms of the restricted flows. Existence 
of equivalent formulations is a source of bi-Hamiltonian structure for some of the 
restricted flows. 
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The Kdv hierarchy corresponds to  N = 1,  E = E,= 1 ,  E,, = a, E ,  = ad3+ u,J+fu,, and 
for r = O ,  1 , 2  restrictions (2.126) are given by , 

(2.13a) 

(2.136) 

a u o x x x + h ~ o ,  = Kz = Bo($+) = Bt(+A-'$). ( 2 . 1 3 ~ )  

Equation (2.130) with Bc gives the well known [3] Neumann system while (2.130) 
with E,  provides a different and Lagrangian (!) formulation for the Neumann system 
which has not been known before. This Lagrangian leads to a Hamiltonian form of 
the Neumann system through the Dirac theory of constraints. Equation (2.136) with 
E, leads to the Garnier system while the E,  Hamiltonian structure endows the Garnier 
system with a hi-Hamiltonian formulation [ 11. Equation ( 2 . 1 3 ~ )  is not explicitly solvable 
for U and its consequences are not studied in this paper. 

In the following sections we shall find general solutions to  (2.126) for the KO and 
K ,  flows of the =Kdv and CHD hierarchies and shall determine the corresponding 
finite-dimensional systems. They are identified with the known families of integrable 
potentials. 

3. Coupled Kdv hierarchy 

Coupled Kdv hierarchies start with K O =  0 and K ,  = U,. After some examples we give 
an explicit description of their finite-dimensional restrictions for arbitrary number of 
fields U*. 

3.1. Exampies 

3.1.1. N = 1, E = 1, zeroth flow resrricfion: the Neumann system. Since E, = J, E ,  = 
$J3+u,J+fu,, the first form of the restriction (2.130): O =  Bo($$)=  a(++) yields 
( + + ) = c o f o r + = ( + , , .  . .  ,$,)'andtheflow(2.12a)isrestrictedtoasphere($$)=c,> 
0. The elimination of the 'Lagrange multiplier' uu from the linear problem equation 
0 = dXr + (U"- A)$ yields the Neumann system 131 

0 = $xx + cil[(+.x$x) + ( + A +  )I+ - A+ (3.1) ( $ + ) = C " .  

The second form of the restriction (2.13a): 

0 = E , ( + A - ' + )  = (:a3+ U ,J+$U, ,~ ) ($A- '+)  

can also he solved for uo: 

U,, = - f ($A- l+) - l ($A- l$)xx  + ($A-1$)-2{$($A-'+):+ do).  (3.2) 
Substitution of (3.2) in (3.1) gives the second form of the Neumann system 

which is a Lagrangian ~~ system with the Lagrangian 

(3.4) 

The connection between the Neumann system and the Kdv equation was first noted 
in [SI. A more thorough discussion of the Neumann system is shifted to appendix 2. 
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3.1.2. First pow restriction: the Garnier system. The restriction uOr = Bo(44)  =a(&$) 
yields uo= (4+)+c0 and equation ( 2 . 1 2 ~ )  gives 

M Antonowicz and S Rauch- Wojciechowski 

O =  bXx + [(MI + co-Al4  
which is the Garnier system. The second restriction uOx = B,(4- '4)  = 
(+a3+ uoJ+~uo,)(r#-'@) provides a second Lagrangian formulation for the Garnier 
system and leads to its bi-Hamiltonian formulation [I]. The connection between the 
Garnier system and the Kdv equation was first noted in [6]. 

3.1.3. N = 2 ,  E = E " + A E , ,  zeroth pow restriction: DWW and I t0  generalizations of the 
Neumann system. For N = 2 equations ( 2 . 1 2 ~ )  read 

[(E,+AE,)J~+ u,+u ,A-A2]4  = O .  (3.5) 

Equations of the N = 2 hierarchy have three compatible Hamiltonian structures: 

1 3  where Jo=+~oa3+u,J+fu, , ,  J ,=zE , J  +u,a+ful , ,  J2=-J  and the restrictions (2.126) 
on the KO flow read 

The first restriction K O =  Bo@,o, gives 

0=(44), 0=+~,(44)~~~+~,(44)~+~~,~(44)-(4A4)~ 
which have solutions U ,  = ( 2 / c o ) ( @ A + ) +  c , ,  (44) = co> 0. After substitution of uI the 
restricted flow (3.5) takes the form 

O = ( ~ ~ + I \ ~ , ) + ~ ~ +  (3.6) 

If E = 1 (3.6) reads 

(3.7) 

with 

Equation (3.7) describes the motion of a unit mass in the quartic potential V,( 4) which 
is constrained to the sphere ($4) = co. We shall call it the uww-Neumann system 
since the case E = E,,= 1 selects the dispersive water waves (UWW) equations in the 
EKdv family of hierarchies [4]. 

For E = A  equation (3.6) gives 

J V d 4 )  
J4 

(3.8) A@xr + uo$ +- = 0 

with 
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and V, as in (3 .7) .  It does not have as direct a physical interpretation as the DWW- 

Neumann system. 
However, using another form of the restriction, i.e. KO = E , @ ( - , , ,  we end (for E = A )  

with U,,= d,(dJA-'+)-', ($4) = d o .  It leads to the finite-dimensional system 

(3.9) 

with 

Equations (3.9) describe the motion of a unit mass in the rational potential V, which 
is constrained to the sphere (44) = d o .  We shall call it the Ito-Neumann system since 
E = A  corresponds to the It0 equation in the cKdv family [4]. 

From the very construction it follows that (3.8) and (3 .9)  are equivalent. Explicitly 
this equivalence is given by the proper alignment of constants co, c I ,  do ,  d , :  

following from the form of U,,, U,. The remaining restrictions lead to yet another form 
of ( 3 . 9 ,  being instrumental for their multi-Lagrangian and multi-Hamiltonian formu- 
lation. 

3.2. General solufion for c K d v  hierarchy 

To find the general solution of equation (2.126) we substitute it with equivalent formal 
series equations. This approach was introduced in [ 2 ] ,  where the case of K,-flow was 
studied in full detail. Using the K,-flow equation as an example we briefly describe 
the method. 

The formal series equations 

U; = - J - @ -  U: = JiQPt (3.10a, b )  

where 

U -  = z N u ; + z N - ' u ; _ ,  

(3.11b) 
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are equivalent to 
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U, = &@O) B N @ ( - N )  (3.12a, 6) 

in the sense that they imply the same conditions on U", . . . , u N - ,  as (3.12~1, b). The 
advantage of using (3.10) is that they can be solved explicitly: 

U - =  ( 1  + f ~ - ) - 2 [ C ~ + ~ E ( Z ) ( @ ; ) 2 - ~ & ( Z ) ( 1  ( 3 . 1 3 ~ )  

U + =  ( 1  - f @ ' ) - ' [ C ' + & E ( Z ) ( @ ~ ) ' + ~ & ( Z ) ( 1  (3.136) 

where 

c -  = z N C , + r N - ' C N _ , + Z N ~ 2 C , ~ , + .  . , c+ = c:+ zc:+ z * c ; i  

and U N , .  . . , U; or U:, . . . , U;-, are given as the first N +  1 (or N )  terms in the series 
(3.13a, 6 )  respectively. The cKdv reduction uN = -1 is compatible with ( 3 . 1 3 ~ )  when 
c ,  = -1. 

The general solution of equation (2.126) with arbitrary m can be built from (3.13) 
since E, has the block structure and the equation 

= B,@D,-,I (3.14) 

consists of two separate subsystems for uN-, , . . . , U, and uo,  . . . , U,-, which are of 
the form ( 3 . 1 2 ~ )  and (3.126) respectively. Thus the solution ( u o , .  . . , u N - , )  of (3.14) 
can be expressed in terms of (3.13a, b )  as 

+ 
(U,, ..., U N  -, )=(U:, ...,U,-lrUmr...,UN-l). 

Now we can write the general form of the system (2.12) corresponding to a fixed 
Hamiltonian structure E, in (2.126). First we divide (2.12a) by A"' to get 

A ; " ' E ( A ~ ) + ~ ~ + ( U ~ A ; ~ + .  . . + u N A y - " ) &  = O  

Then using (3.11) we obtain 

k = 1, . . . , n. (3.15) 

u,A;"+. . . + u , A r - "  =Resz-'"(A:u++A;u-) 

where Res means residuum (the coefficient at z-' in the formal power series) and 
U+, U- are given by the formulae (3.13). An important observation is that 

& Res z'"[A:u++A;u-] 

6 -_ - Res z - ,  [&E (z)[ ( 1 + $@-)-I(@ ;)2 - ( 1 -:@+)-I( @ z ) 2 ]  
8'$k 

+ [ c + ( l - f @ + ) - 1 - c - ( l  +;@-)-'I] 
Thus (3.15) is the Euler-Lagrange equation 6% = O  for 

2, = T, - v,, 
with 

T, = k ( @ x A - f m ~ ( A ) & )  - Res &e(z ) z - '" { (  1 + i @ - ) - ' ( @ T ) 2  - ( 1  -i@+)-'(@T)2) 
V, =Res z -" (c+( l  - f ~ + ) - ' - c ~ ( l + f @ ~ ) - ' } + c o n s t a n t  

(3.16) 



Restricted flows of soliton hierarchies 5051 

where & ( A )  = diag(a(A,), . . . , & ( A . ) ) .  All potentials appearing in (3.16) are linear 
combinations of two basic families of potentials which we get by expanding ( I  +&- '  
and ( I  -$@+I-' in powers of z. From (l+$I-)-' we get [2] 

-f(44, -%$A+) +ac$4,2 -%4A2+)+f($4)(4M) - i (4$I3 
and from ( I  - + @ + ) - I  we get 

.._ M-'  ; . @ - 2 ( $ p + , !  +.v 7 9 A - 3 9 )  +;.@-3($A-2+)' 

where M = 1 -+(@A-'$) .  They are the Jacobi family of permutationally symmetric 
potentials (found in [7]) which are separable in the generalized elliptic coordinates. 

For our method to work in the KO-flow case some adjustments are necessary. 
Equations (2.12bj now read 

-.,, K O ,  ~ \-,,,, - \ = O  (3.17) 

and for in = 0, . . . , N - 1 carry the following information: 

(3.18a) U k  = U k  

Ux = U ;  k =  m + l , .  . . , N - l  (3.18b) 

($4) = Jo = constant 

where U' and U -  are solutions of the equations 

+ k = O , .  . . , m - l  

.It@+ = 0 J-@- = 0. 

Substituting @- with F- given by 

-1.7 , F-=z-! jo+ i; = z-'Act 2 - A ; + .  . 
k = l  

we automatically take care of the constraint ($$j =fo and are able to write a general 
solution of (3.17) in the form of (3.18) with 

U +  = ( @ + ) - 2 ( C + + ~ E ( z ) [ ( @ : ) 2 - 2 @ + @ : ~ 1 )  (3.19a) 
\ - , - - > ,  ,. .-.I \ u - = ( F - j ~ ' j c - + : a j z j l ( r , j - - i r  r,jj. ( S . l Y 0 )  

Remark. The choice c - =  - J : z ~ - ~ + c N - ~ z ~ - ' + c N _ ~ z ~ - ~ + .  . . in (3.19b) is com- 

Since 
patible with the reduction uN = -1. 

u,A;"'+. . . + u , A ~ - ~  = u,+Res zC"(A;u++/ ;u - )  

and 

$k Res z-"'(A:u++l;u-) 

s -_ - Res ~~"'{~&(z)[(@:)'(@')~'+(F;)1(F-)-'l 
8$k 

(3.20) 
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takes the Lagrangian form 
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6{Tm - v,-tu,[(dJ$)-foll=o 

where 

T, = f ( & K m & ( A ) & - $  Res z-"~(z)[(@:)~(@')-'+(F;)~(F-)-'l 
V, = -4 Res z-"[c'(@')-'+c-(F-)-'] 

and U, is a Lagrange multiplier. 
Thus we proved that for r = O  the system (2.12) can be written as a Lagrangian 

system with constraints in N equivalent ways corresponding to m = 0, . . . , N - 1.  This 
equivalence is realized by transformations involving constants of integration c+ ,  c- 
(see (3.1) and [2] for the description of the case r =  1). 

(3.21) 

If & ( A )  = A' then equations (3.20) with m = s are particularly simple: 

($+I =fo 

and the Lagrange multiplier is given by 

=f;'(&&)+f;' Res z-"'{~-[(F~)-'-zf;~] - c+(@+)-'}. 

The last equality follows from the homogeneity of [( F-)-' - zf;'] and (Q+)-' of orders 
2 and -2 respectively. 

The remaining case m = N is slightly different. The equation 

B,@,-,) = 0 

gives 

Ux = U: k = O ,  _ .  , , N-1  

U +  being the solution ( 3 . 1 9 ~ )  of J+@+=O. Since 

u,A;,+ ...+ ~ , - , A ~ + ~ , = R e s z - ~ ( u + A : ) - l  

(2.120) takes the Lagrangian form 6 2 ,  = O  with 2, = T, - V, where 
T , - ?  - 2(&A-N&(A)&) -$  Res ~ C " E ( Z ) ( @ ~ ) ~ ( @ ' ) - '  

(3.22) 
V ,  = -;($$)-+Res z-"c'(@+)-'. 

There are no constraints here but the system 62, = 0 is degenerate since 

In appendix 2 we study this formulation of the Neumann system and compare it with 
Moser's description [3]. 

All the potentials appearing in (3.21) are linear combinations of two basic families 
of potentials which we get by expanding (@+)-I and (F')-' in powers of z. They 
coincide with the Neumann family of integrable potentials [7] (see appendix 1) and, 
therefore, describe completely integrable systems. 
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4. Coupled Harry Dym hierarchy 

The coupled HD hierarchy corresponds to uo = -a2 reduction of (2.1). We shall present 
here particular solutions for N = 1,2 and then give general formulae. 

4.1. Examples 

4.1.1. N =  I ,  E = I ,  zerothflow restriction: KO= Bo(+A+)  = B , ( + + )  = 0 where Bo = -Jl = 
- u l 8 - p l x ,  B,  =aa3-a2a. The equation O =  B,(+A+) gives U,= w , ( + A + ) - ~ ,  w ,  = 
constant and 

O =  &+ w , ( + A + ) - ~ A +  -a2+ = + x x + - [ - i w l ( + A + ) - l  - ;a2(++)] .  (4 . la)  

Note that here in the restriction (2.126) Bo goes with the square eigenfunctions 
@(,) = ( + A + )  and, consistently, 8, goes with in order to have a natural potential 
description of (4.1~1). The other condition O =  B , ( + + ) =  (aJ3-a2J)(++) gives 

I 

a 
a+ 

$(++rx++x+x)-a2(++)= wo=constant 

and after elimination of U, the restricted flow (2.12a) reads 

O =  +xx+(+A+)-l[(+x+z) -a2 (++)  -2wolA+ -aZ+ 

=+xx+2(+A+)-1[E(+, dtX, w I ) - w o I A + + w l ( + ~ + ) ~ 2 A + - ~ ' +  (4.1 b) 

where E ( + ,  +x, w , ) = i [ ( + ~ + ~ ) - w l ( + A + ) - ' - a 2 ( + + ) ]  is an integral of motion for 
(4.la). Clearly equations (4.lb) are equivalent to ( 4 . 1 ~ )  if E ( + ,  &, w , ) =  wo.  

4.1.2 N =2, E = 1. Equations of this hierarchy have three compatible Hamiltonian 
structures: 

where J,,=fa'-a 2 a, J , = u , a + &  J 2 = u , d + ~ u 2 ,  

The zeroth flow restriction reads 

= K,=Bo@l,,=B,@o,= B,@,- , )  

where QCx,=  ( (+AX+) ,  (+A*"+))'. The condition K O =  Bo@lll yields 

(3 
a 

a+ 
0 = ~ ~ ~ + - [ - w , ( ~ A + ) - ' + f ~ ~ ( + A + ~ ~ ~ ( + A ~ + ) - ~ f a ~ ( + + ) ]  (4.2a) 

w I ,  w2 are constants, while K O =  B,@,_ , ,  yields 

0 = +xx+ u,A+ + z2(+A+)-2-  a2+ 

;(++xx + +x+x) - a'(++) = zI = constant 

z2 - constant 

which is equivalent to (4.2a). 

(4.2b) 
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4.2. General solution for C H D  hierarchy 

Hamiltonian structures of CHD hierarchies differ from those of d d v  hierarchies only 
through their Jo and IN entries which correspond to different reductions uo= -a2 and 
uN = -1 of the linear problem (2.1). Thus the solution method for the HD version of 
(2.12) with r = O  is analogous to the cKdV case and we just introduce the necessary 
notation and give the final formulae. 

M Antonowicz and S Rauch-Wojciechowski 

Let 

v-= L li& [ ; = ~ - ' A ~ i z ~ ~ A : i .  . . (4.3a) 

@ = g +  L ~ l 4 :  p :  = zA;' + z2A;' f . . . 

k = l  

(4.36) 
k = l  

where g Is the general solution of 

(4.3c) 2 Jog = hg, ,  - a g, = 0. 

Since Ku=O (2.12b) reads 

& @ , , - , j = O  

I....+- rhn -Lorlo -F _-_.._.. +;A-\ n - A  - - *  ...- u1Lu.t6c U. ~U,L.u,,LIU,,, .". ,,, - ,, . . . , N is exp!ici!!y so!vab!e 

Uk = U: 

Uk = U; 

J o ( d @ ) = O  (which implies (+$) = g )  

k =  l , . .  . , m - 1  

k =  m + l , .  . . , N 

where 

U- = (v-)-2{c- +a&(z)[(v;)2 - 2v-v,I) 

U +  = ( G')-'{C'+~Z(Z)[( G:)2-2G+G:x]). 

(4.4a) 

(4.46) 

Remark. The choice 

a d d  -2gg,) (4.5) + - - a2g2-?  
0 -  

ensures compatibility of (4.46) with the HD reduction U,,= -a2. The right-hand side 
of (4.5) is a first integral of ( 4 . 3 ~ ) .  

The restricted flow (2.12) takes the Lagrangian form 83, =0, m = 1,. . . , N where 

z,= r,-v,,+t~,[(++)-gi 
T, =~(drA7'&(A)dY) -4 Res z - "~ '& (z ) [ (G+)~ ' (G : ) '+  ('€-)-'('€;)21 

V, = -f Res ~ - ~ - l [ c + ( G + ) - ' +  c-(W-)-'] 

and U, is a Lagrange multiplier. 

( 4 . 6 ~ )  

The case m = 0 is analogous to m = N in the c K d v  reduction. It is described by 

U k  = U; k =  I , .  . . , N 

and 

so= ru- vu 
To =$(&&(A)#+) -: Res z-'E(z)(T-)-'(W;)' 
Vu= -$a*(+b)-;Res z-'c-(V-)-'. 

(4.66) 



Restricted flows of soliton hierarchies 5055 

There are no constraints here but if e O = O  the Lagrangian (4.6b) is degenerate: 

The case eO=O is distinguished since it corresponds to the degnerate form of ( 4 . 3 ~ )  
with g = g o  = constant while eo = 1 leads to 

g =go+ w,  e2"+ w 2 e  -'Ox 

g = go+ w , x +  w2x 

a # O  

a=O 2 

where w I ,  w2 are additional arbitrary constants. 

Neumann family (at least for e0=O when g = go). It is not a surprise since 
The basic potentials obtained from (G+)-' and ( '€-)-I  coincide again with the 

Y ( z ,  A) = z-'@+(z-', A-') 

G+(Z, A) = z Y ' F ( z - ' ,  A-') for g = go =/o. 
The case of K,-flow of the C H D  hierarchy is the most complicated one. K, can be 
written as 

r =  1 , .  . . , N 
1 

U,, = J,-' - G 
or in terms of the formal power series 

Thus the equation 

K ,  = BN@,I-N) 
leads to 

U N  =[ (44) -g lr2  

Uk = U: k = 0 ,  . . . , N -  1 

where ut is given by (4.46) and g satisfies Jog = 0. Analogously 

K I  = &@(,-,I m = l , .  . . , N - 1  

is solved by 

Uk = U* + 

Uk = U; 

k = O , . .  . , m - 1  
k = m ,  ..., N 

where U', U- are given by (4.4a, b )  with '4- substituted by 

G - = - g +  pi4; p ;  = I + Z - ' A ~  + z -~A\ :+  
k - 1  

(4.7) 

Remark The solution (4.7) automatically leads to uo= -U' and uN = [ (&$) -g] -2  

The restricted flow (2.12) takes the following multi-Lagrangian form: 
(provided CO' is chosen as in (4.5)). 

6( T", - V,") =o  
T," =+( &A-"'e(A)&) -: Res z-*-'e(z)[( Gf)-'( G:)'+ (G-) - ' (  G;)'] 

V, = -+Res r ~ " - ' [ c ' ( G ' ) ~ ' + c ~ ( G - ) ~ ' ] .  

m = 1,. . . , N 
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Remark The equati,on K ,  = Bo@,,, cannot he solved explicitly and the K, restricted 
flow of the CHD hierarchy possesses N equivalent Lagrangian formulations only. In 
all previous cases we had Nf 1 such formulations for N-component systems. 

5. Conclusions 

We have studied here restricted flows (2.12) of cKdv  and CHD hierarchies which come 
from the energy-dependent Schradinger spectral problem (2.1). There is a multitude 
of restricted flows which depend on the choice of vector field K, and Hamiltonian 
structure B,,, in (2.126). We have determined here these restricted flows for which 
(2.126) is explicitly solvable for U in terms of $. Restricted flows ofthe first two vector 
fields K O ,  K ,  have been determined in complete generality (for arbitrary number of 
fields U,) and have been identified with known potential Newton equations. These 
potentials are the Jacobi and Neumann families of potentials separable in generalized 
elliptic and spherical-conical systems of coordinates correspondingly. Our results 
establish a close link between restricted (stationary) flows of the energy-dependent 
Schrodinger spectral problem and the classical separability theory of the Hamilton- 
Jacobi equation. 

Due to the multi-Hamiltonian nature of cKdv and CHD hierarchies there are many 
equivalent forms of the restrictions (2.126). These provide several Lagrangian formula- 
tions for the restricted flows and in a quite natural way lead to finite-dimensional 
hi-Hamiltonian systems. This is of great interest since the bi-Hamiltonian formulation 
for finite-dimensional integrable systems has not yet been developed. These questions 
have been discussed in [ l ,  21. The results of this paper provide a lot of new material 
for such studies. We only discuss here (in appendix 2)  a new Lagrangian and Hamil- 
tonian formulation of the Neumann system which is equivalent (in an extended phase 
space) to Moser's formulation [3]. 

Recently Zeng and Li published a paper [8] where restricted flows of the energy- 
dependent Schrodinger spectral problem have been studied by the use of a somewhat 
different method [9]. Their results correspond to part of the results of section 3.2 when 
& = l ,  r = l .  

Appendix 1. The Neumann family of symmetric potentials 

The spherical-conical coordinates c,, . . . , L1, q are defined by the rational equation 

where 0 < a, < . . . < a,, and 4, , . . . , 4. are the Cartesian coordinates. The general form 
of a potential separable in spherical-conical coordinates t , ,  , , . , l.-, , q is given by 
the Stackel theorem [ lo]  hut for physical applications more important is the form of 
separable potentials expressed in terms of Cartesian coordinates q , ,  . . . , 9.. A general 
separable potential cannot be expressed explicitly through the Cartesian coordinates 
because high-order algebraic equations have to be solved. A special class of permuta- 
tionally symmetric potentials separable in spherical-conical coordinates, for which 
explicit Cartesian expressions exist, has been found in [7]. These potentials are called 
Neumann potentials because they remain separable when constrained to a sphere and 
one of them is the Neumann harmonic potential. 
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The Cartesian form of the complete set of commuting integrals of motion is the 
key to the characterization of the Neumann potentials. It has been proved in L7.111 
that a natural Hamiltonian is separable in the spherical-conical coordinates if and 
only if it has n - 1 global functionally independent and commuting integrals of motion 
of the form 

where I ,  = qip, - qjp i ,  i, j = 1, , , , , n. 
These integrals are quadratic in momenta, and k i ( q )  are such functions of q = 

( q ,  , . . . , q.) which guarantee commutativity of K,. Neumann potentials are derived 
from the following proposition. 

Proposition 1 .  Let 

. .  

K!"'(q, P) = p ; ( q , p ) + k ! " ' ( q )  i = l , .  . . , n (A21 

m = 1,2, ,  . . , be a sequence of n-tuples of functions defined recursively by 

k!"") = -43 1 a&:'"' + q 2 q k i " ) ( q )  ki ' )  = qf, (A3a) 
( j : l  ) 

Then Kim' commute for all in = 1 , 2 , .  . . . Moreover the recursion relation (A3a) can 
be inverted 

and integrals K!"' commute for in =0, -1, -2,. . . . 

Only n - 1 integrals of the type (A2) are independent since K',"'+. . .+ K;" = 0. 
However, functions k!" are rational homogeneous functions of degree 2m and new 
functions L!"'=q-'"k!"' are of degree 0. New integrals K!"'=P, (q ,p )+k!"  also 
commute and moreover commute with ( q p )  = q , p ,  +. . . + 4.p.. The Hamiltonian 

has the natural kinetic energy term and homogeneous of degree -2 potential 

Note that if we add to V""' any spherically symmetric function f (4')  then the new 
potential has the same integrals I?!."' and remains completely integrable. Recursion 
relations (A3a, b )  define through (A4) two separate families of integrable potentials. 
Potentials of the upward family read: 

tq -4( 4.Q) - f q - 4 ( q & 2 q ) - L  2 q  -6 (q&q)* 
tq-4(q&pq)-' 2 q  --6 (sSPzq)(qSPs)+fq-"qSPq)~. . . . 

The first potential, when constrained to a sphere q'=constant, gives the well known 
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Neumann system. The first few potentials of the downward family are: 

1 ¶-2-  (4d-2¶) - (qd-") +(¶d-W 
( ¶ & - I ¶ )  ( 4 d - 1 4 ) 2  (¶d-'¶)2 (¶d-'c7)' 

The spherically symmetric term q-2 in the second potential is not essential since all 
iniegrabie poientiais of ihe iu'eumann famiiy are determined moduio the additive term 
f b2). 

Appendix 2. Lagrangian formulation and Hamiltonian structure of the 
Neumann system 

Lagrangian formulation 

The restriction O =  B,(q5A-'4) leads to the second form (3.3) of the Neumann system. 
It is generated by the Lagrangian (3.4). For the proper identification of the forms (3.1) 
and (3.3) we have to extend the phase space of variables q5, & by the integration 
constants co and do correspondingly. Then the standard form of the Neumann system 
reads 

For the second formulation we note first that by multiplying (3.3) by &A-', 4 A - I  
and 4 we get 

The expression E is the energy integral of (3.3).  Equation (A66)  is a first-order 
constraint satisfied by all solutions of (3.3) and it implies that (44) is also an integral 
of motion of (3.3). Equation (A6c)  is satisfied identically by solutions of (3 .3)  and 
(3.1). We shall write the system (3.3) as 

To see the equivalence of (A7)  with (AS) we rewrite (A7)  in the form 
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where the last equality follows from the equation of constraints E + ($$) = 0 and its 
second derivative (4&x)+(q!x&) = 0. Thus every solution of the system (A7) with a 
fixed value of the constant do also fulfils the Neumann system (A5) with co= ($4) = 
-e(+, &,do)  since E is an integral of motion for (A7). Conversely, the Lagrangian 
system (A7) has a unique solution of the initial value problem +(O), &(O), and for 
any trajectory of the Neumann system (A5) staying on (44) = cu we can determine 
the value of do (from &,do)  = -co) so that the corresponding solution of (A7) 
with fixed +(oj, &,iaj coincides with rhe starting soiurion ofrhe Neumann system (As). 

Hamiltonian structure 

For a constrained system, like the Neumann system, there may exist many Hamiltonian 
rurmurauurib W I I I E ~ I  irau LO ~ n e  > a m ~ .  rquarrurin OII LIIC ~iiaiiiiuiu U, c u ~ ~ ~ a i i i i > .  niiivrrg 

these the most interesting are those which can he used to prove complete integrability 
of the constrained system. 

A natural source for guessing an appropriate Hamiltonian is the separability of the 
Neumann system in spherical-conical coordinates and the corresponding set of com- 
muting integrals of motion 

I_ ~,..:.-. ... L2.L ?..I .._L. .._.. :.-. ... .L. -._:P.,> .r -.-. A.-:-.- A -^-- 

These integrals have been used by Moser [3] to construct the integrable Hamiltonian 

H M  = $ ( P P ) ( W )  - ( ~ ) ~ - ( q A q ) l  = f  A X  
,=I 

where q = ( 4 ,  , . . . , q"),  p = ( p ,  , . . . , p. ). It yields the Neumann system on the surface 
of constraints F, = ( q q )  - 1 = 0, Fz = ( qqx) = ( q p )  = 0 and remains integrable on this 
surface. 

in  order to  see now Moser's Hamiiionian description of the Keumann system 
follows from the Lagrangian (3.4) we have to use the parameter-dependent Hamiltonian 

1 
H M  = - [ ( P P I  (44  ) - ( qP ) 2  - ( q A 9 ) I  

2 CO 

constrained to  F, = ( q q )  - c,, = 0, F2 = (qp) = 0. Then the requirement of invariance of 
the constraints F , ,  F2 under the modified Hamiltonian H * = H , + / L , F , + + ~ F ; :  

O =  i; = { F , ,  H * }  

O =  p2= ( F 2 ,  H * }  on F,=O=F, 

leads to the Hamiltonian 
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which (accidentally) commutes with F, , F2 everywhere (not only on F, = 0 = F2). The 
Hamilton equations of H* on the manifold F ,  = 0 = F2 are 

M Antonowicz and S Rauch- Wojciechowski 

which, after using F, = 0 =  F2,  coincides with the Neumann system on the sphere 

A second Eamiitonian iormuiarion for the Neumann system foiiows from the 
( 4 9 )  = C o .  

Lagrangian (3.4) which generates the Legendre transformation 

The corresponding Hamiltonian reads 

This Legendre transformation is degenerate (compare (3.23)): G, = ( p 4 )  = 0 which 
means that we have a constraint system with the primary constraint G, =O. In order 
to determine the complete manifold of constraints and the modified Hamiltonian 
H * = n + p G ,  we apply the Dirac theory [12]. The equation 

{GI,  H }  = { G I ,  G*}=2H +2(44) = 2G2 

defines G,  and subsequently 

0 = { G 2 ,  H * } = ~ ( J ~ A ~ ) + L L ( - ~ R )  
determines p. Hence 

since H = - (4 i j )  on the constraints. Thus on the constraints G, = 0 = G, we get equations 

-. 
I nese equations impiy [ARj if 

since from G 2 = 0  we have H = - ( @ j ) .  
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